[70240413 Statistical Machine Learning, Spring, 2015]

Unsupervised Learning (II) Dimension Reduction

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.Tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

March 17, 2015

Outline

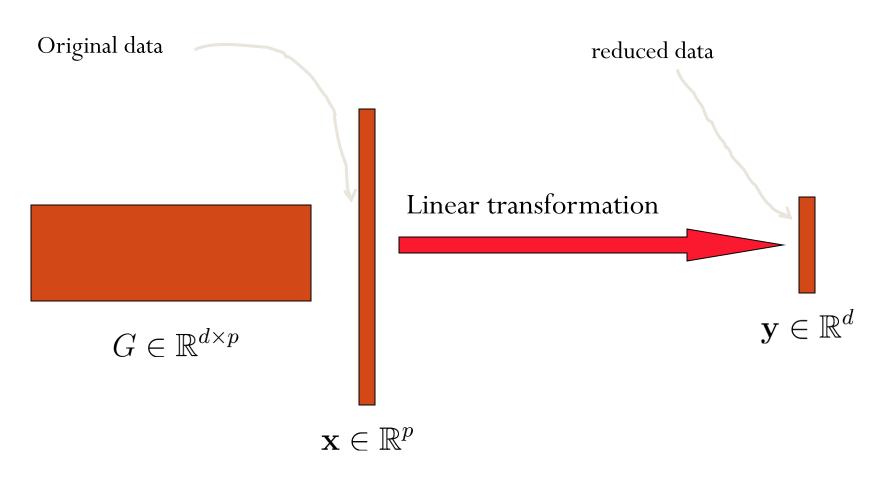
- What is dimension reduction?
- Why dimension reduction?
- Dimension reduction algorithms
- Principal Component Analysis (PCA)
- Local linear embedding
- Feature selection

What is dimension reduction?

- Dimension reduction refers to the mapping of the original high-dim data onto a lower-dim space
 - Criterion for dimension reduction can be different based on different problem settings
 - Unsupervised setting: minimize the information loss
 - Supervised setting: maximize the class discrimination
- Given a set of data points of *p* variablesCompute the linear transformation (projection)

$$G \in \mathbb{R}^{d \times p} : \mathbf{x} \to \mathbf{y} = G\mathbf{x} \in \mathbb{R}^d$$

What is dimension reduction? – linear case



 $G \in \mathbb{R}^{d \times p} : \mathbf{x} \to \mathbf{y} = G\mathbf{x} \in \mathbb{R}^d$

Why dimension reduction?

- Most machine learning and data mining techniques may not be effective for high-dimensional data
 - Curse of Dimensionality
 - Query accuracy and efficiency degrade rapidly as the dimension increases.
- The intrinsic dimension may be small.
 - For example, the number of genes responsible for a certain type of disease may be small.

Why dimension reduction?

Visualization: projection of high-dimensional data onto 2D or 3D.

Data compression: efficient storage and retrieval.

Noise removal: positive effect on query accuracy.

Example: a job satisfaction questionnaire

A questionnaire with 7 items

Please respond to each of the following statements by placing a rating in the space to the left of the statement. In making your ratings, use any number from 1 to 7 in which 1="strongly disagree" and 7="strongly agree."						
 My supervisor treats me with consideration. My supervisor consults me concerning important decisions that affect my work. My supervisors give me recognition when I do a good job. My supervisor gives me the support I need to do my job well. 						
5. My pay is fair.						
6. My pay is appropriate, given the amount of responsibility that comes with my job.						
7. My pay is comparable to the pay earned by other employees whose jobs are similar to mine.						

Example: a job satisfaction questionnaire

• A questionnaire with 7 items, each item corresponds to a variable

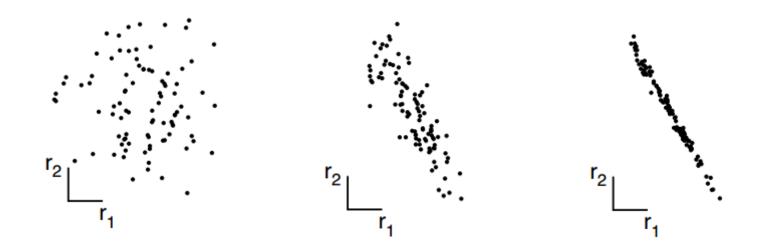
Correlations

N = 200 (participants)

	Variable	1	2	3	4	5	6	7	
Strong correlation means high redundancy	1	1.00							
	2	.75	1.00			satisfaction with supervision			
	3	.83	.82	1.00		•			
	4	.68	.92	.88	1.00				
	5	.03	.01	.04	.01	1.00			
	6	.05	.02	.05	.07	.89	1.00		satisfaction with pa
	7	.02	.06	.00	.03	.91	.76	1.00	

Redundant?

• which one is redundant?



 highly redundant data are likely to be compressible -- essential idea for dimension reduction

- Face recognition:
 - Representation: a high-dimensional vector (e.g., $20 \times 28 = 560$) where each dimension represents the brightness of one pixel

 Underlying structure parameters: different camera angles, pose and lighting condition, face expression, etc.

- Character recognition:
 - Representation: a high-dimensional vector (e.g., $28 \times 28 = 784$) where each dimension represents the brightness of one pixel

 Underlying structure parameters: orientation, curvature, style (e.g., 2 with/without loops)

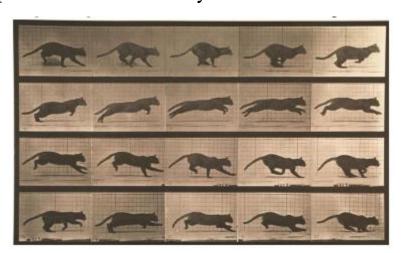
- Text document analysis:
 - Representation: a high-dimensional vector (e.g., 10K) of term frequency over the vocabulary of the word

Term	D1	D2
game	1	0
decision	0	0
theory	2	0
probability	0	3
analysis	0	2

 Underlying structure parameters: topic proportions, clustering structure

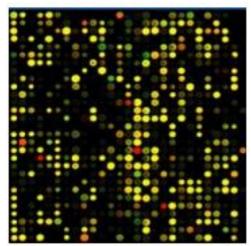
Motion capture:

 Representation: pose is determined, e.g., by the 3D coordinates of multiple points on the body



- Underlying structure parameters: pose type
- Motion can be viewed as a trajectory on the manifold

- Microarray gene expression:
 - Representation: vector of gene expression values or sequences of such vectors



Underlying structure parameters: correlated (or dependent)
 gene groups

Dimension reduction algorithms

Many methods have been developed

		Unsupervised	Supervised
	Linear	PCA, ICA, SVD, LSA (LSI)	LDA, CCA, PLS
Principle component	Non-linear	Isomap, LLE, MDR	Learning with Non-linear kernels

• We will cover PCA and LLE as examples

PCA: Principal Component Analysis

• probably the most widely-used and well-known of the "standard" multivariate methods

- invented by Karl Pearson (1901) and independently developed by Harold Hotelling (1933)
- first applied in ecology by Goodall (1954) under the name "factor analysis" ("principal factor analysis" is a synonym of PCA).

Review: Eigenvector, Eigenvalue

 \diamond For a square matrix $A(p \times p)$, the eigenvector is defined as

$$A\boldsymbol{\mu} = \lambda \boldsymbol{\mu}$$

- ullet where *u* is an eigenvector and λ is the corresponding eigenvalue
- Put in a matrix form

$$AU = U\Lambda$$

$$U = [\boldsymbol{\mu}_1, \cdots, \boldsymbol{\mu}_p] \quad \Lambda = \operatorname{diag}(\lambda_1, \cdots, \lambda_p)$$

For symmetric matrices, the eigenvectors can be orthogonal

$$UU^{\top} = U^{\top}U = I$$

□ Thus:

$$U^{\top}AU = \Lambda$$
 $A = U\Lambda U^{\top}$

PCA for dimension reduction

An eigen-decomposition process to data covariance matrix

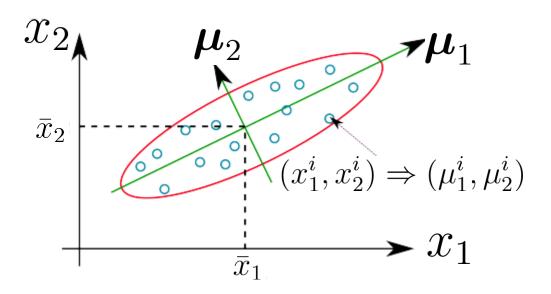
- Minus the empirical mean to get centered data
- Compute the covariance

$$S = \frac{1}{N} \sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}$$

- Doing eigenvalue decomposition
 - Let *U* be the eigenvectors of *S* corresponding to the top *d* eigenvalues
- \bullet Encode data $Y = U^{\top}X$
- \bullet Reconstruct data $\hat{X} = UY = UU^{\top}X$

Apply to data covariance -- eigensystem

lacktriangle The eigenvectors of the covariance Σ define a new axis system

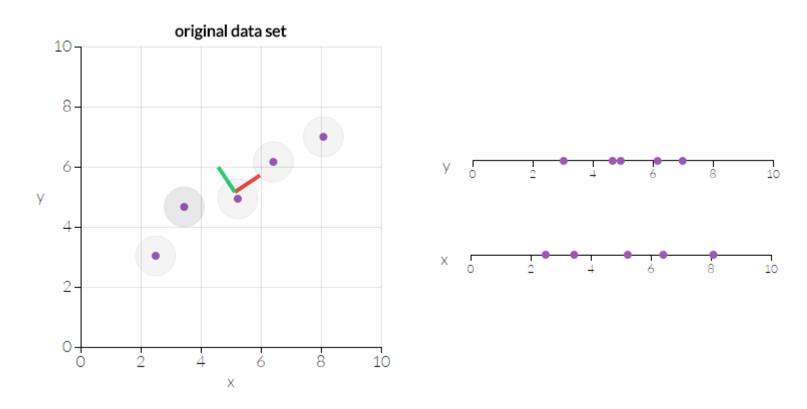


• Any point p_x in the X-axis system, $\bar{\mathbf{x}}$ is the data mean, the coordinate in the *U*-axis system is:

$$p_{\mu} = U^{\top}(p_x - \bar{\mathbf{x}})$$

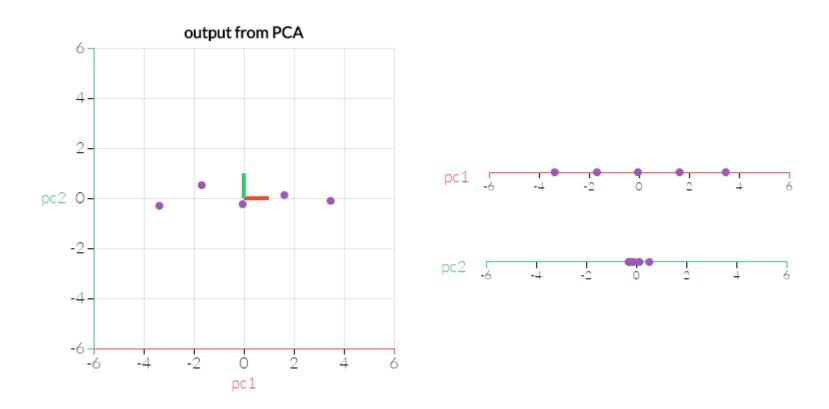
A 2D Example

2D data represented in 1D dimensions



A 2D Example

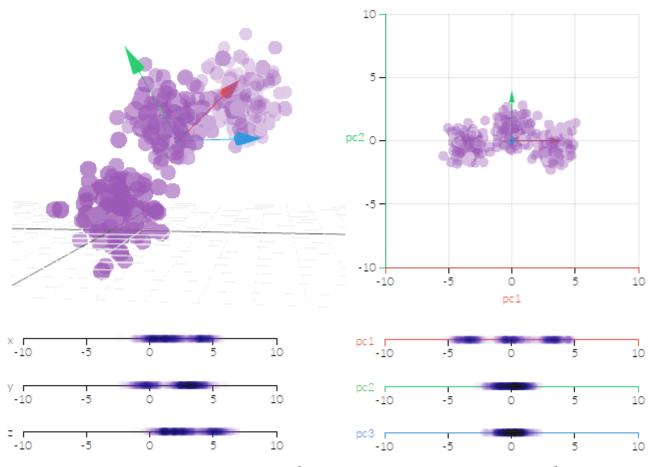
2D data represented in 1D dimensions



[http://setosa.io/ev/principal-component-analysis/]

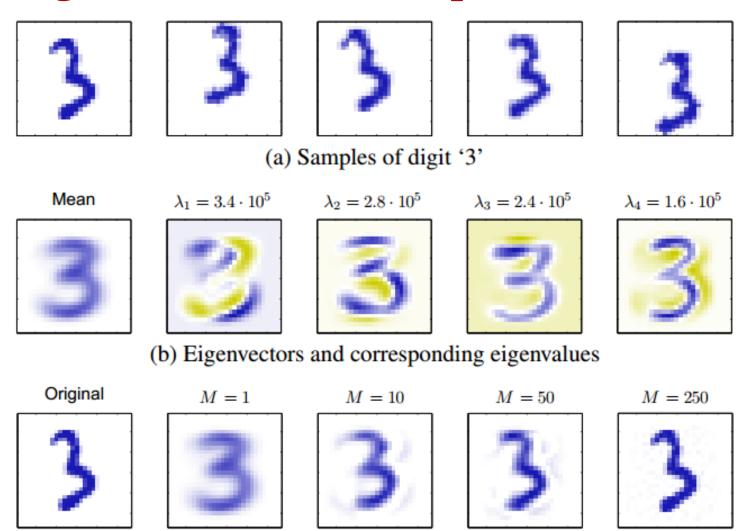
A 3D Example

3D data represented in 2D dimensions



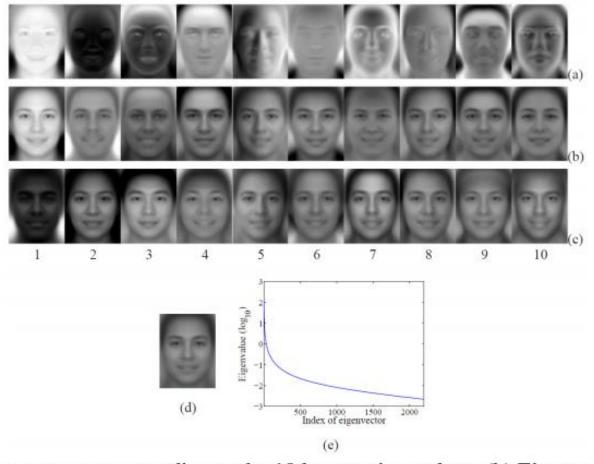
[http://setosa.io/ev/principal-component-analysis/]

A high-dimensional Example



(c) PCA Reconstruction

Eigenfaces



(a) Top 10 eigenvectors corresponding to the 10 largest eigenvalues. (b) Eigenvectors (eigenfaces) are multiplied by 3σ where σ is the square root of eigenvalue and added to the mean face. (c) Eigenvectors are multiplied by 3σ and added to the mean face. (d) Mean face. (e) The logarithm of eigenvalues.

How to choose d?

- Measure the total variance accounted for by the *d* principal components
 - the percentage of the variance accounted for by the i-th eigenvector:

$$r_i = \frac{\lambda_i}{\sum_{j=1}^p \lambda_j} \times 100$$

□ Account for a minimum percentage of total variance, e.g., 95%:

$$\sum_{i=1}^{d} r_i \ge 95$$

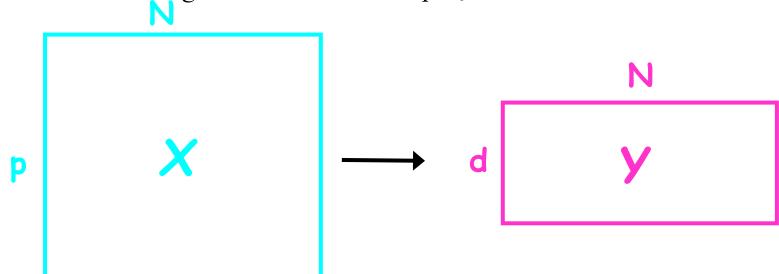
Theory of PCA

- There are three types of interpretation
 - Minimum variance
 - Least reconstruct error
 - Probabilistic model

 \bullet Given a set of data points $\{\mathbf{x}_n\}, n = 1, ..., N$

$$\mathbf{x}_n \in \mathbb{R}^p$$

- Goal:
 - □ Project the data into an d-dimensional (d < p) space while maximizing the variance of the projected data



- ♦ Let's start with the 1-dimensional projection, i.e., d = 1
- We only care about the projection direction, not the scale, so we assume

$$\mu_1^\top \mu_1 = 1$$

The projection is

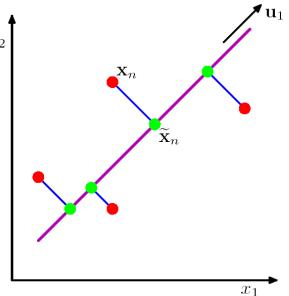
$$y_n = \mu_1^\top \mathbf{x}_n$$

Mean and variance of projected data:

$$\bar{y} = \mu_1^{\top} \bar{\mathbf{x}}, \text{ where } \bar{\mathbf{x}} = \frac{1}{N} \sum \mathbf{x}_n$$

$$\operatorname{var}(y) = \frac{1}{N} \sum_{n} (\mu_1^{\top} \mathbf{x}_n - \mu_1^{\top} \bar{\mathbf{x}})^2 = \mu_1^{\top} S \mu_1$$

$$\square$$
 sample covariance $S = \frac{1}{N} \sum (\mathbf{x}_n - \bar{\mathbf{x}})(\mathbf{x}_n - \bar{\mathbf{x}})^{\top}$



Now, we get a constrained optimization problem

$$\max_{\mu_1} \text{ var}(y) = \frac{1}{N} \sum_{n} (\mu_1^{\top} \mathbf{x}_n - \mu_1^{\top} \bar{\mathbf{x}})^2 = \mu_1^{\top} S \mu_1$$

- where $\mu_1^{\top}\mu_1=1$
- Solve it using Lagrangian methods, we get
 - □ The eigenvector problem

$$S\mu_1 = \lambda_1 \mu_1$$

□ The lagrange multiplier is the eigenvalue

$$\mu_1^{\top} S \mu_1 = \lambda_1$$

□ The eigenvector corresponds to largest eigenvalue is 1st PC.

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n} \mathbf{x}_{n} \quad S = \frac{1}{N} \sum_{n} (\mathbf{x}_{n} - \bar{\mathbf{x}}) (\mathbf{x}_{n} - \bar{\mathbf{x}})^{\top}$$

Additional components can be incrementally found

$$\max_{\mu_2} \text{ var}(y) = \frac{1}{N} \sum_{n} (\mu_2^{\top} \mathbf{x}_n - \mu_2^{\top} \bar{\mathbf{x}})^2 = \mu_2^{\top} S \mu_2$$

- where $\mu_2^{\top}\mu_2 = 1$ and $\mu_1^{\top}\mu_2 = 0$
- Solve this problem with Lagrangian method, we have

$$2S\mu_2 - 2\lambda_2\mu_2 + \gamma\mu_1 = 0$$

which leads to

$$S\mu_2 - \lambda_2\mu_2 - \gamma\mu_1 = 0$$

□ Left multiplying μ_1^{\top} , we get (remember μ_1 is eigenvector)

$$\gamma = \mu_1^{\top} S \mu_2 = \lambda_1 \mu_1^{\top} \mu_2 = 0$$

• For the general case of an d dimensional subspace, it is obtained by the d eigenvectors $\mu_1, \mu_2, \dots, \mu_d$ of the data covariance matrix S corresponding to the d largest eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_d$

A set of complete orthonormal basis

$$\{\mu_i\}, i = 1, \dots, p$$

$$\mu_i^{\top} \mu_j = \delta_{ij}$$

Each data point can be represented as

$$\mathbf{x}_n = \sum_i \alpha_{ni} \mu_i$$

Due to the orthonormal property, we can get

$$\alpha_{ni} = \mathbf{x}_n^{\top} \mu_i$$

$$\mathbf{x}_n = \sum_i (\mathbf{x}_n^{\top} \mu_i) \mu_i$$

A set of complete orthonormal basis

$$\{\mu_i\}, i = 1, \dots, p$$

$$\mu_i^{\top} \mu_j = \delta_{ij}$$

• We consider a low-dimensional approximation

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^d z_{ni}\mu_i + \sum_{i=d+1}^p b_i\mu_i$$

- $lue{}$ where b_i are constants for all data points
- The best approximation is to minimize the error

$$\min_{U,\mathbf{z},\mathbf{b}} J := \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2$$

A set of complete orthonormal basis

$$\{\mu_i\}, i = 1, \dots, p \qquad \mu_i^{\top} \mu_i = \delta_{ij}$$

The best approximation is to minimize the error

$$J = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2 \qquad \tilde{\mathbf{x}}_n = \sum_{i=1}^{d} z_{ni} \mu_i + \sum_{i=d+1}^{p} b_i \mu_i$$

• we get (*proof?*)

$$z_{ni} = \mathbf{x}_n^{\top} \mu_i, \ i = 1, \dots, d$$
 $b_i = \bar{\mathbf{x}}^{\top} \mu_i, \ i = d + 1, \dots, p$

Use the general representation $\mathbf{x}_n = \sum_i (\mathbf{x}_n^\top \mu_i) \mu_i$, we get that the displacement lines in the orthogonal subspace

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=d+1}^p \{ (\mathbf{x}_n - \bar{\mathbf{x}})^\top \mu_i \} \mu_i$$

With the result

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=d+1}^p \{ (\mathbf{x}_n - \bar{\mathbf{x}})^\top \mu_i \} \mu_i$$

• We get the error

$$J = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \tilde{\mathbf{x}}_n\|^2 = \frac{1}{N} \sum_{n=1}^{\infty} \sum_{i=d+1}^{p} (\mathbf{x}_n^{\top} \mu_i - \bar{\mathbf{x}}^{\top} \mu_i)^2$$
$$= \sum_{i=d+1}^{p} \mu_i^{\top} S \mu_i$$

The optimization problem

$$\min_{\mu_i} J$$

• where $\mu_i^{\top} \mu_i = 1$

♦ Consider a 2-dimensional space (p=2) and a 1-dimensional principal subspace (d=1). Then, we choose μ_2 that minimizes

$$\min_{\mu_2} J = \mu_2^\top S \mu_2$$

s.t.:
$$\mu_2^{\top} \mu_2 = 1$$

• We have:

$$S\mu_2 = \lambda_2\mu_2$$

- We therefore obtain the minimum value of J by choosing μ_2 as the eigenvector corresponding to the smaller eigenvalue
- We choose the principal subspace by the eigenvector with the large eigenvalue

Minimum Error Formulation

◆ The general solution is to choose the eigenvectors of the covariance matrix with d largest eigenvalues

$$S\mu_i = \lambda_i \mu_i$$

- where $i = 1, \ldots, d$
- The distortion measure (i.e., reconstruction error) becomes

$$J = \sum_{i=d+1}^{p} \lambda_i$$

PCA Reconstruction

Sy the minimum error formulation, the PCA approximation can be written as:
d

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^d z_{ni} \mu_i + \sum_{i=d+1}^p b_i \mu_i$$

$$z_{ni} = \mathbf{x}_n^{\top} \mu_i, \ i = 1, \dots, d$$
 $b_i = \bar{\mathbf{x}}^{\top} \mu_i, \ i = d + 1, \dots, p$

We have

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^d (\mathbf{x}_n^\top \mu_i) \mu_i + \sum_{i=d+1}^p (\bar{\mathbf{x}}^\top \mu_i) \mu_i$$

$$= \sum_{i=1}^d (\mathbf{x}_n^\top \mu_i + \bar{\mathbf{x}}^\top \mu_i - \bar{\mathbf{x}}^\top \mu_i) \mu_i + \sum_{i=d+1}^p (\bar{\mathbf{x}}^\top \mu_i) \mu_i$$

$$= \bar{\mathbf{x}} + \sum_{i=1}^d (\mathbf{x}_n^\top \mu_i - \bar{\mathbf{x}}^\top \mu_i) \mu_i$$

The example of School States Essentially, this representation implies compression of p-dim data into a d-dim vector with components $(\mathbf{x}_n^{\top} \mu_i - \bar{\mathbf{x}}^{\top} \mu_i)$

Probabilistic PCA

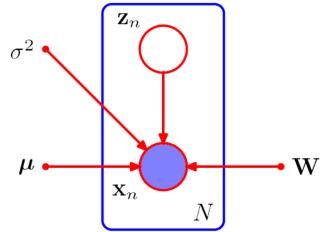
- A simple linear-Gaussian model
- \bullet Let z be a latent feature vector $\mathbf{z} \in \mathbb{R}^d$
 - floor In Bayesian, we assume it's prior ${f z} \sim \mathcal{N}(0,I)$
- A linear-Gaussian model

$$\mathbf{x} = W\mathbf{z} + \mu + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

this gives the likelihood

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|W\mathbf{z} + \mu, \sigma^2 I)$$

 $lue{}$ the columns of W span a linear subspace

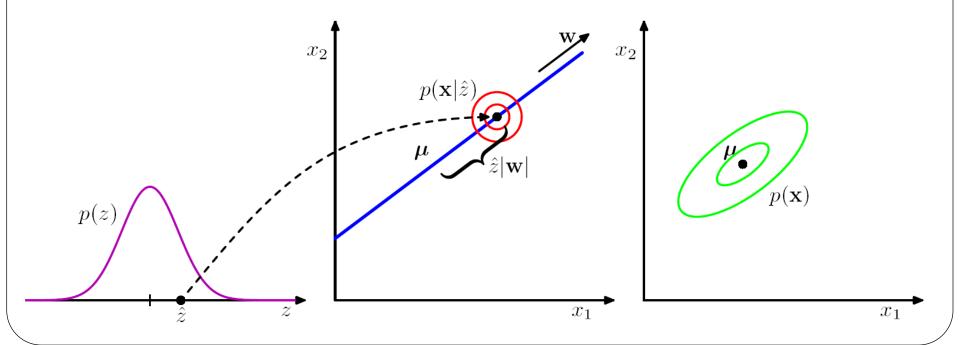


Probabilistic PCA

By the properties of Gaussian, we can get the marginal

$$p(\mathbf{x}) = \int p(\mathbf{z})p(\mathbf{x}|\mathbf{z})d\mathbf{z} = \mathcal{N}(\mathbf{x}|\mu, C)$$

$$C = WW^{\top} + \sigma^2 I$$



Unidentifiability issue

 Any rotation of the latent dimensions leads to invariance of the predictive distribution

$$p(\mathbf{x}) = \int p(\mathbf{z})p(\mathbf{x}|\mathbf{z})d\mathbf{z} = \mathcal{N}(\mathbf{x}|\mu, C)$$
$$C = WW^{\top} + \sigma^2 I$$

- Let R be an orthogonal matrix with $RR^{\top} = I$
- Define

$$\widetilde{W} = WR$$

□ Then, we have

$$\widetilde{W}\widetilde{W}^{\top} = WRR^{\top}W^{\top} = WW^{\top}$$

which is independent of R

Inverse of the Covariance matrix

lacktriangle Evaluating the inverse of the covariance matrix C has complexity $O(p^3)$. We can do inversion as follows

$$C^{-1} = \sigma^{-2}I - \sigma^{-2}WM^{-1}W^{\top}$$

• where the d x d matrix M is:

$$M = W^{\top}W + \sigma^2 I$$

• Evaluating the inverse of M has complexity $O(d^3)$

Probabilistic PCA

By the properties of Gaussian, we can get the posterior

$$p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|M^{-1}W^{\top}(\mathbf{x} - \mu), \sigma^{-2}M)$$
$$M = W^{\top}W + \sigma^{2}I$$

 \Box The posterior mean depends on x (a linear projection of x)

$$\mathbb{E}[\mathbf{z}|\mathbf{x}] = M^{-1}W^{\top}(\mathbf{x} - \mu)$$

Posterior covariance is independent of x

Maximum Likelihood PCA

 \diamond Given a set of observations $X = \{\mathbf{x}_n\}$, the log-likelihood is

$$\log p(X|\mu, W, \sigma^2) = \sum_{n} \log p(\mathbf{x}_n|W, \mu, \sigma^2)$$

$$= -\frac{Np}{2} \log(2\pi) - \frac{N}{2} \log|C| - \frac{1}{2} \sum_{n} (\mathbf{x}_n - \mu)^\top C^{-1} (\mathbf{x}_n - \mu)$$
w

• We get the MLE: $\hat{\mu} = \bar{\mathbf{x}}$ and

$$\log p(X|\mu, W, \sigma^2) = -\frac{N}{2} \left(p \log(2\pi) + \log|C| + \text{Tr}(C^{-1}S) \right)$$

Maximum Likelihood PCA

Log-likelihood

$$\log p(X|\mu, W, \sigma^2) = -\frac{N}{2} \left(p \log(2\pi) + \log |C| + \text{Tr}(C^{-1}S) \right)$$

□ The stationary points can be written as (Tipping & Bishop, 1999)

$$\hat{W} = U_d (L_d - \sigma^2 I)^{1/2} R$$

- □ L_d is diagonal with eigenvalues λ_i ; R is an arbitrary d x d orthogonal matrix; U_d is p x d matrix whose columns are eigenvectors of S
- The maximum of likelihood is obtained while the *d* eigenvectors are chosen to be those whose eigenvalues are the *d* largest
- MLE for σ^2 is:

$$\hat{\sigma}^2 = \frac{1}{p-d} \sum_{i=d+1}^{p} \lambda_i$$

• The average variance associated with the discarded dimensions

Read proof at [Tipping & Bishop. Probabilistic Principal Component Analysis, JRSS, 1999]

Maximum Likelihood PCA

- lacktriangle Since the choice of R doesn't affect the covariance matrix, we can simply choose R=I
- Recover the conventional PCA
 - lacksquare Take the limit $\sigma^2 o 0$, we get the posterior mean

$$\mathbb{E}[\mathbf{z}|\mathbf{x}] = M^{-1}W^{\top}(\mathbf{x} - \mu) = (\hat{W}^{\top}\hat{W})^{-1}\hat{W}^{\top}(\mathbf{x} - \bar{\mathbf{x}})$$

- which is an orthogonal projection of the data point into the latent space
- □ So we recover the standard PCA

EM Algorithm for PPCA

♦ E-step: evaluate expectation of complete likelihood

$$\mathbb{E}[\log p(X, Z|\Theta)] = -\sum_{n} \left\{ \frac{p}{2} \log(2\pi\sigma^2) + \frac{1}{2} \text{Tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^\top]) \right\}$$

$$+\frac{1}{2\sigma^2} \|\mathbf{x}_n - \mu\|^2 - \frac{1}{\sigma^2} \mathbb{E}[\mathbf{z}_n]^\top W^\top (\mathbf{x}_n - \mu) + \frac{1}{2\sigma^2} \text{Tr}(\mathbb{E}[\mathbf{x}_n \mathbf{z}_n^\top] W^\top W)$$

where

$$\mathbb{E}[\mathbf{z}_n] = M^{-1}W^{\top}(\mathbf{x}_n - \bar{\mathbf{x}})$$

$$\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}] = \sigma^2 M^{-1} + \mathbb{E}[\mathbf{z}_n] \mathbb{E}[\mathbf{z}_n]^{\top}$$

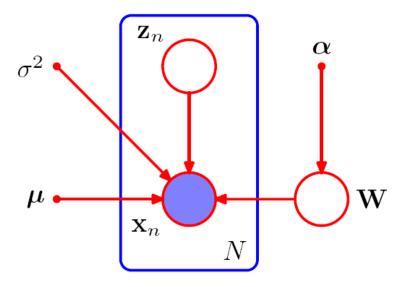
♦ M-step: optimizes over parameters

$$W = \left[\sum_{n} (\mathbf{x}_{n} - \bar{\mathbf{x}}) \mathbb{E}[\mathbf{z}_{n}]\right]^{\top} \left[\sum_{n} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}]\right]^{-1}$$

$$\sigma^2 = \frac{1}{Np} \sum \left\{ \|\mathbf{x}_n - \bar{\mathbf{x}}\|^2 - 2\mathbb{E}[\mathbf{z}_n]^\top W^\top (\mathbf{x}_n - \bar{\mathbf{x}}) + \text{Tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^\top] W^\top W) \right\}$$

Bayesian PCA

A prior is assumed on the parameters W



$$p(W|\alpha) = \prod_{i=1}^{d} \left(\frac{\alpha_i}{2}\right)^{p/2} \exp\left\{-\frac{1}{2}\alpha_i \mathbf{w}_i^{\top} \mathbf{w}_i\right\}$$

- ♦ Inference can be done in closed-form, as in GP regression
- Fully Bayesian treatment put priors on μ, σ^2, α

Factor Analysis

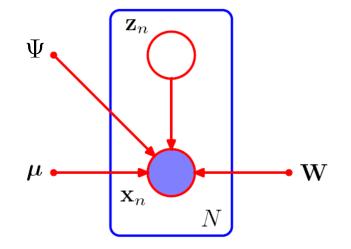
- Another simple linear-Gaussian model
- lacktriangle Let z be a latent feature vector $\mathbf{z} \in \mathbb{R}^d$
 - ullet In Bayesian, we assume it's prior $\mathbf{z} \sim \mathcal{N}(0, I)$
- A linear-Gaussian model

$$\mathbf{x} = W\mathbf{z} + \mu + \epsilon \quad \epsilon \sim \mathcal{N}(0, \Psi)$$

- \blacksquare Ψ is a diagonal matrix
- this gives the likelihood

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|W\mathbf{z} + \mu, \Psi)$$

the columns of W span a linear subspace



Factor Analysis

- We can the inference tasks almost the same as in PCA
- The predictive distribution is Gaussian
- EM algorithm can be applied to maximum likelihood estimation

PCA in high-dimensions

 \diamond What is *p* is very large, e.g., p >> N?

$$S = \frac{1}{N} X X^{\top}$$

- which is a $p \times p$ matrix
- Finding the eigenvectors typically has complexity $O(p^3)$
 - Computationally expensive
- The number of nonzero eigenvalues is no larger than N
 - Waste of time to work with S
- $lue{}$ How about working with the $N \times N$ full rank Gram matrix?

$$G = X^{\top}X$$

Dual PCA – PCA in high-dimensions

- For centered data, we have
 - $S = \frac{1}{N} X X^{\top}$ with eigenvalues and eigenvectors (λ_i, μ_i)
 - $G = X^{\top}X$ with eigenvalues and eigenvectors (γ_i, ν_i)

$$X^{\top}X(X^{\top}\mu_i) = N\lambda_i(X^{\top}\mu_i)$$
, $\nu_i = X^{\top}\mu_i$ and $\gamma_i = N\lambda_i$

Thus,

$$X\nu_i = XX^{\top}\mu_i = N\lambda_i\mu_i = \gamma_i\mu_i \qquad \mu_i = \frac{1}{\gamma_i}X\nu_i$$

Kernel PCA

- **PCA is linear**: the reduced dimension representation is generated by linear projections
- Kernel PCA is nonlinear by exploring kernel trick

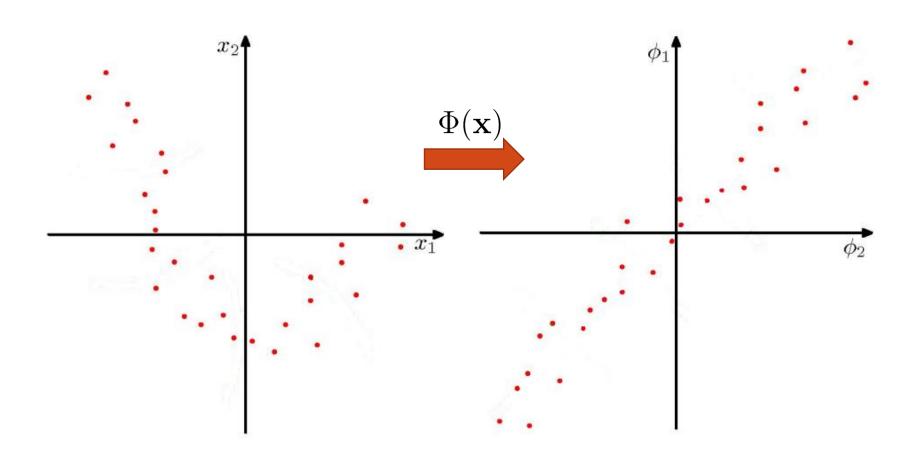
$$\Phi: \mathcal{X} \to \mathcal{H}$$
$$\mathbf{x} \mapsto \Phi(\mathbf{x})$$

Apply dual PCA in the Hilbert space

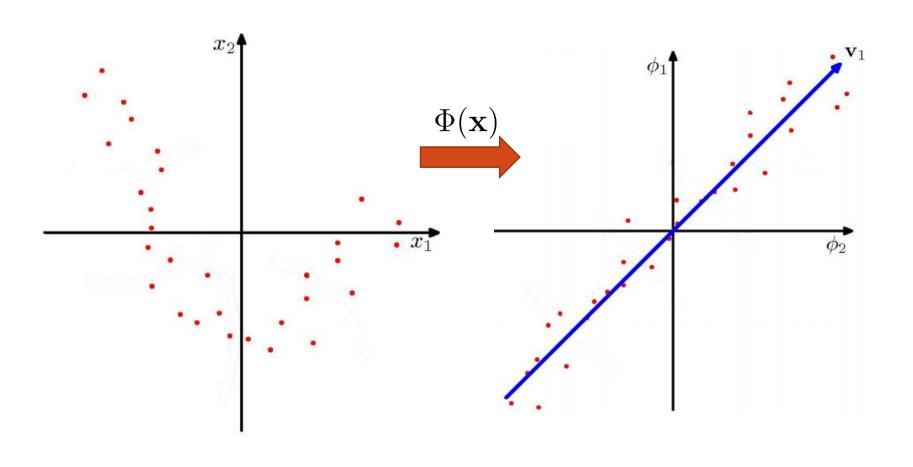
$$G = \Phi(X)^{\top} \Phi(X) = [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j}$$

• where k(.,.) is the reproducing kernel

Example of Kernel PCA



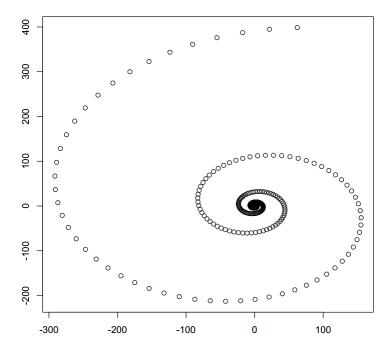
Example of Kernel PCA



Nonlinear Dimension Reduction (Manifold Learning)

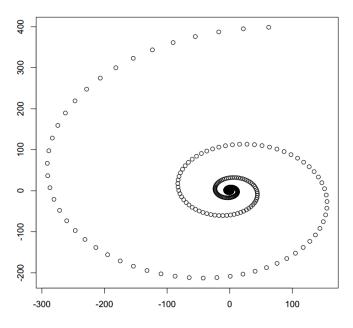
Manifold Learning

♦ Manifold: a smooth, curved subset of an Euclidean space, in which it is embedded



♦ A *d*-dim manifold can be arbitrarily well-approximated by a *d*-dim linear subspace, the tangent space, by taking a sufficiently small region about any point

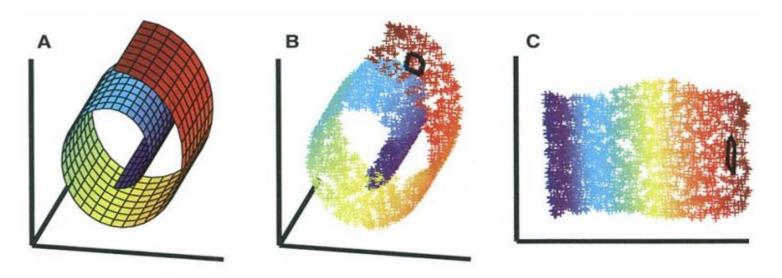
Manifold Learning



- ♦ If our data come from a manifold, we should be able to do a local linear approximation around each part of the manifold, and then smoothly interpolate them together into a single global system
- To do dimension reduction, we want to find the global low-dimediates

Locally linear embedding (LLE)

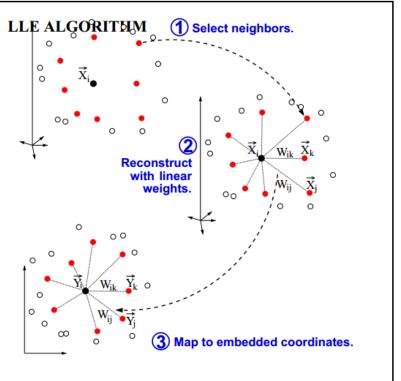
A nonlinear dimension reduction technique to preserve neighborhood structure



♦ **Intuition**: nearby points in the high dimensional space remain nearby and similarly co-located w.r.t one another in the low dimensional space

How does LLE work?

- 1. Compute the neighbors of each data point, \vec{X}_i .
- 2. Compute the weights W_{ij} that best reconstruct each data point \vec{X}_i from its neighbors, minimizing the cost in Equation (1) by constrained linear fits.
- 3. Compute the vectors \vec{Y}_i best reconstructed by the weights W_{ij} , minimizing the quadratic form in Equation (2) by its bottom nonzero eigenvectors.



Step 2: minimize reconstruction error

$$\min_{W} \epsilon(W) = \sum_{i} \|\mathbf{x}_{i} - \sum_{j \in \mathcal{N}_{i}} W_{ij} \mathbf{x}_{j}\|_{2}^{2}$$
s.t.:
$$\sum_{i} W_{ij} = 1, \ \forall i$$

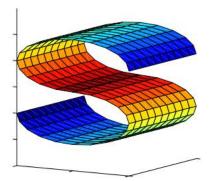
Step 3: neighborhood-preserving embedding

$$\min_{Y} \Phi(Y) = \sum_{i} \|\mathbf{y}_{i} - \sum_{j \in \mathcal{N}_{i}} W_{ij} \mathbf{y}_{j}\|_{2}^{2}$$

geometric structure W

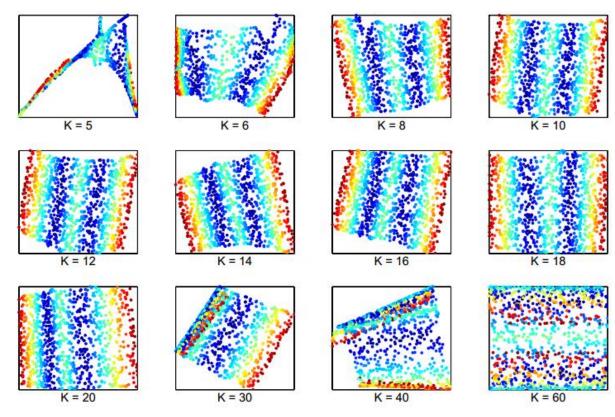
 \bullet Free parameter: K – number of neighbors per data point

Original manifold

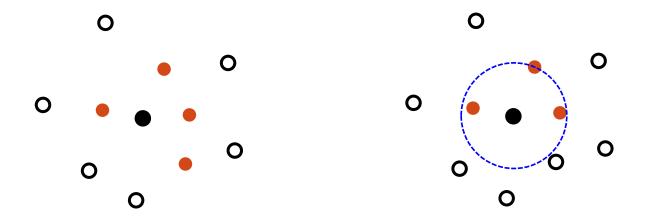


samples

Embedding results by LLE with various K



♦ Step 1: choose neighborhood – many choices



Note: different points can have different numbers of neighbors

♦ Step 2: minimize reconstruction error

$$\min_{W} \epsilon(W) = \sum_{i} \|\mathbf{x}_{i} - \sum_{j \in \mathcal{N}_{i}} W_{ij} \mathbf{x}_{j}\|_{2}^{2}$$
s.t.:
$$\sum_{i \in \mathcal{N}_{i}} W_{ij} = 1, \ \forall i$$

■ each data point can be done in parallel — **locality**

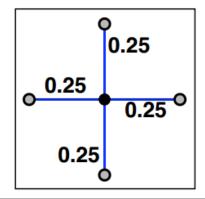
$$\|\mathbf{x}_i - \sum_j W_{ij} \mathbf{x}_j\|_2^2 = \|\sum_j W_{ij} (\mathbf{x}_i - \mathbf{x}_j)\|_2^2 = \sum_{jk} W_{ij} W_{ik} G_{jk} = W_i^{\top} G W_i$$
$$G_{jk} = (\mathbf{x}_i - \mathbf{x}_j)^{\top} (\mathbf{x}_i - \mathbf{x}_k), \ \forall j, k \in \mathcal{N}_i$$

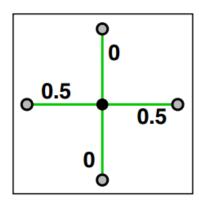
Solution (Lagrange methods):

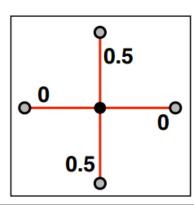
$$2GW_i - \lambda I = 0$$

$$\sum_{W_{ij} = 1} W_i = \frac{G^{-1}1}{1^{\top} G^{-1}1}$$

- What's happening if K > p?
 - □ The space spanned by *k* distinct vectors is the whole space
 - Each data point can be perfectly reconstructed from its neighbors $\mathbf{x}_i = \sum W_{ij}\mathbf{x}_j$
 - □ *G* is singular! (fewer constraints than parameters)
 - The reconstruction weights are no longer uniquely defined
 - \blacksquare Example (D=2, K=4)







- \diamond What's happening if K > p?
 - $lue{}$ The space spanned by k distinct vectors is the whole space
 - Each data point can be perfectly reconstructed from its neighbors

$$\mathbf{x}_i = \sum_{j \in \mathcal{N}_i} W_{ij} \mathbf{x}_j$$

- G is singular!
- The reconstruction weights are no longer uniquely defined
- Regularized opt. problem: (save ill-posed problems)

$$\min_{W_i} \ W_i^{\top} G W_i + \gamma W_i^{\top} W_i$$

s.t.:
$$\sum_{i} W_{ij} = 1, \ \forall i$$

Solution (Lagrange methods):

$$2(G + \gamma I)W_i - \lambda I = 0$$

$$\sum_{i} W_{ij} = 1$$

$$W_i = \frac{(G + \gamma I)^{-1} 1}{1^{\top} (G + \gamma I)^{-1} 1}$$

Step 3: neighborhood-preserving embedding

$$\begin{aligned} & \min_{Y} & \Phi(Y) = \sum_{i} \|\mathbf{y}_{i} - \sum_{j \in \mathcal{N}_{i}} W_{ij} \mathbf{y}_{j}\|_{2}^{2} \\ & \text{s.t.} : \sum_{i} \mathbf{y}_{i} = \mathbf{0} \\ & \text{centered around the origin} \\ & \frac{1}{N} \sum_{i} \mathbf{y}_{i} \mathbf{y}_{i}^{\top} = I \quad \text{unit covariance} \end{aligned}$$

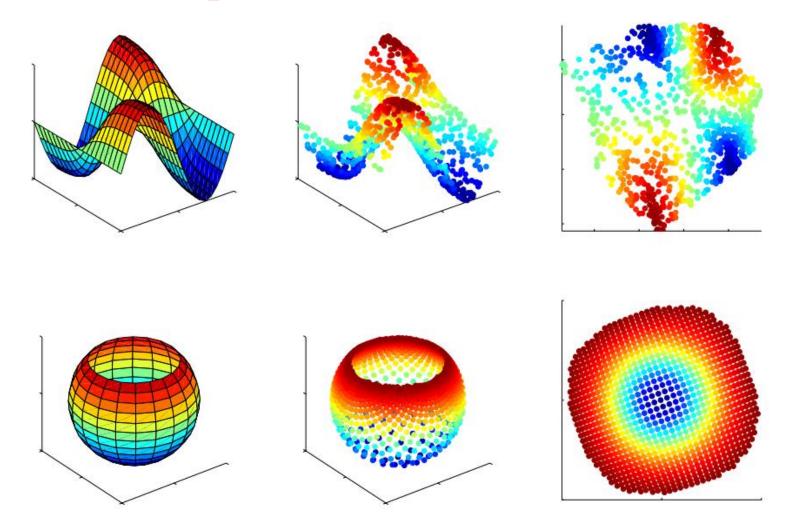
- □ all data points are coupled together **global coordinates**
- □ Solution (Lagrange methods) eigenvalue problem:

$$F = \frac{1}{2} \sum_{i} \|\mathbf{y}_i - \sum_{j} W_{ij} \mathbf{y}_j\|_2^2 - \frac{1}{2} \sum_{\alpha\beta} \lambda_{\alpha\beta} \left(\frac{1}{N} \sum_{i} y_{i\alpha} y_{i\beta} - \delta_{\alpha\beta}\right)$$

$$(\mathbf{1} - W)^{\top} (\mathbf{1} - W) Y = \frac{1}{N} Y \Lambda, \text{ where } \Lambda_{\alpha\beta} = \lambda_{\alpha\beta}$$

Find the *d* eigenvectors with the lowest eigenvalues

More examples



[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003]

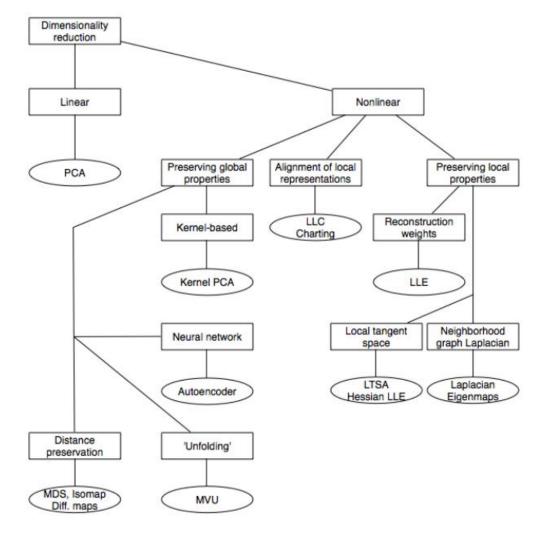
More examples

• 1965 grayscale 20 x 28 images (D=560); K = 12



[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003]

Many other algorithms



[van der Maaten et al., Dimension Reduction: A Comparative Review, 2008]

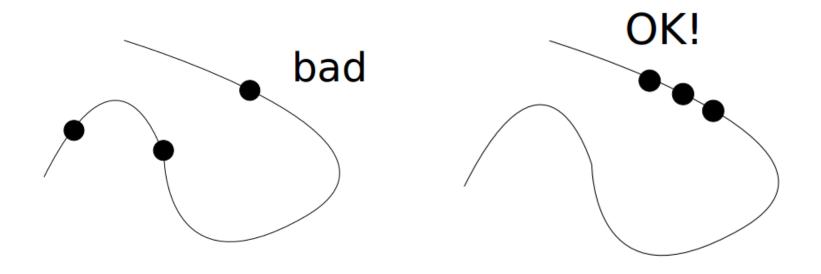
Technique	Convex	Parameters	Computational	Memory
PCA	yes	none	$O(D^3)$	$O(D^2)$
MDS	yes	none	$O(n^3)$	$O(n^2)$
Isomap	yes	k	$O(n^3)$	$O(n^2)$
MVU	yes	k	$O((nk)^3)$	$O((nk)^3)$
Kernel PCA	yes	$\kappa(\cdot,\cdot)$	$O(n^3)$	$O(n^2)$
Diffusion maps	yes	σ, t	$O(n^3)$	$O(n^2)$
Autoencoders	no	net size	O(inw)	O(w)
LLE	yes	k	$O(pn^2)$	$O(pn^2)$
Laplacian Eigenmaps	yes	k,σ	$O(pn^2)$	$O(pn^2)$
Hessian LLE	yes	k	$O(pn^2)$	$O(pn^2)$
LTSA	yes	$\begin{bmatrix} & & & & & & & & & & & & \\ & & & & & & $	$O(pn^2)$	$O(pn^2)$
LLC	no	m, k	$O(imd^3)$	O(nmd)
Manifold charting	no	m	$O(imd^3)$	O(nmd)

Note: n is N; D is p in our slides

[van der Maaten et al., Dimension Reduction: A Comparative Review, 2008]

No Free Lunch

The "curvier" your manifold, the denser your data must be!

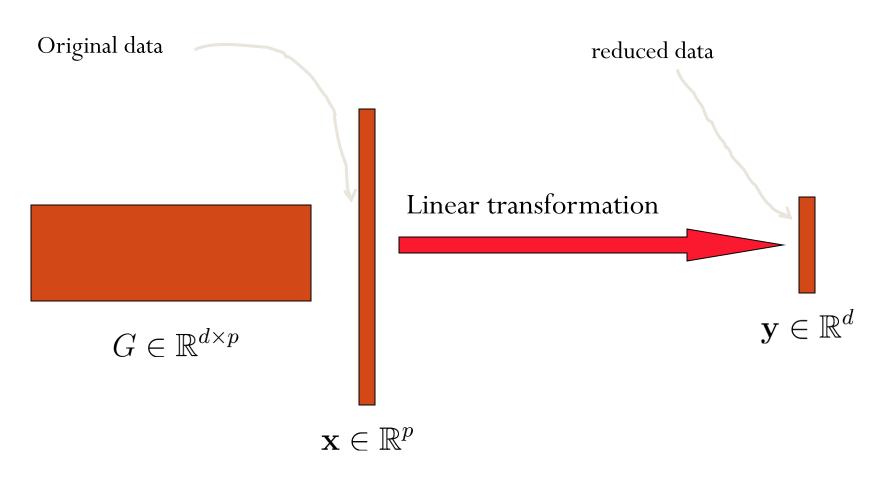


Matlab Toolbox

Laurens van der Maaten

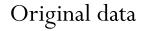
http://lvdmaaten.github.io/drtoolbox/ (34 techniques for dimensionality reduction and metric learning)

What is dimension reduction? - linear case

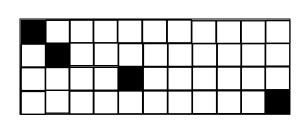


 $G \in \mathbb{R}^{d \times p} : \mathbf{x} \to \mathbf{y} = G\mathbf{x} \in \mathbb{R}^d$

What is feature selection?



 $\mathbf{y} \in \mathbb{R}^d$



$$G \in \{0, 1\}^{d \times p}$$

$$G \in \{0, 1\}^{d \times p}$$
$$\sum_{j} G_{ij} = 1$$

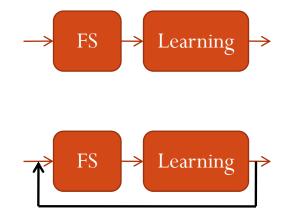
$$\mathbf{x} \in \mathbb{R}^p$$

$$G \in \{0,1\}^{d \times p} : \mathbf{x} \to \mathbf{y} = G\mathbf{x} \in \mathbb{R}^d$$

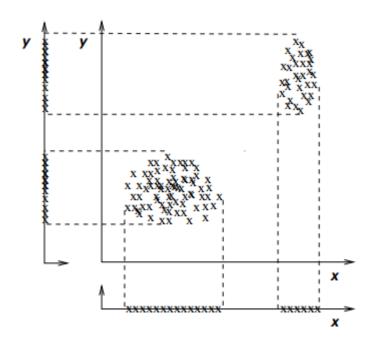
Linear transformation

Feature selection methods

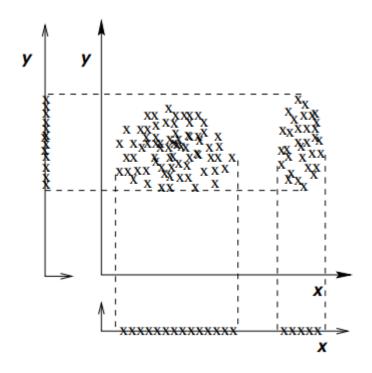
- ♦ FS is popular in supervised learning by maximizing some function of predictive accuracy
- Selecting an optimal set of features is NP-hard (Weston et al., 2003)
- Approximate methods:
 - Filter methods [Kira & Rendell, 1992] (Separate)
 - Based on feature ranking (individual predictive power);
 - A pre-processing step and independent of prediction models (optimal under very strict assumptions!) [Guyon & Elisseeff, 2003]
 - Wrapper methods [Kohavi & John, 1997] (Half-integrated)
 - Use learning machine as a black box to score subsets of variables according to their predictive power
 - Can waste of resources to do many re-training!
 - Embedded methods (**Integrated**)
 - Perform FS during the process of training; Usually specific to given learning machines
 - Data efficient and Can avoid many re-training!



• x and y are redundant in discriminating the two clusters (i.e., each one decides the clustering results)

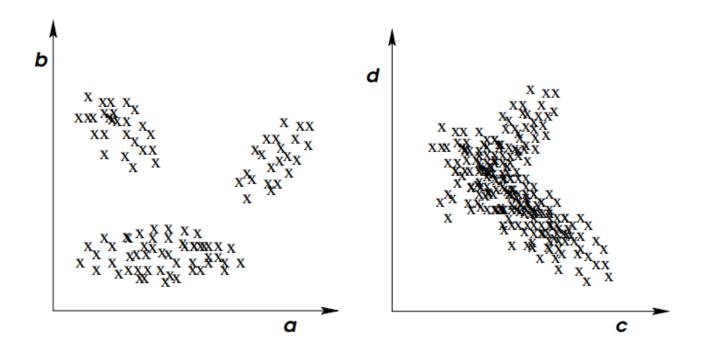


y is irredundant in discriminating the two clusters



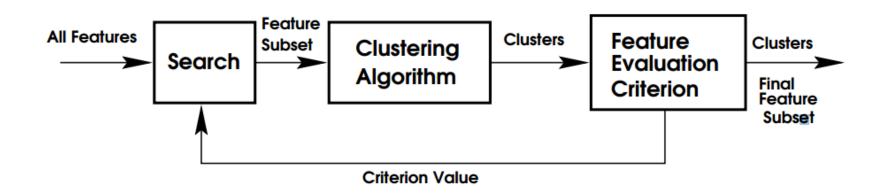
Note: irrelevant features can misguide clustering

Different feature subsets lead to different clustering



Which one should we pick?

A wrapper framework for unsupervised feature selection



Some key issues:

- Different feature subsets have different numbers of clusters
- The feature selection criteria have biases w.r.t feature subset dimensionality

Feature Search

- \diamond An exhaustive search is intractable (2^d possible feature subsets)
- Greedy search:
 - Sequential forward search
 - Starting from 0 features
 - Add one feature at a time to maximize the gain of some criterion
 - Stop when no improvement
 - Sequential backward elimination
 - Start from the full set
 - Eliminate one feature at a time to minimize the loss of some criterion
 - Stop when no change

Clustering algorithm

Any clustering algorithms can be used in the wrapper framework

Feature subset section criteria

- * "different classifications [clusterings] are right for different purpose, so we cannot say any one classification is best" (Hartigan, 1985)
- Some commonly used criteria:
 - Scatter separability (applicable for any clustering methods)

$$S_w = \sum_{j=1}^K \pi_j \mathbb{E}[(X - \mu_j)(X - \mu_j)^\top | C_j] = \sum_{j=1}^K \pi_j \Sigma_j$$

$$S_b = \sum_{i=1}^K \pi_j (\mu_j - M_0) (\mu_j - M_0)^{\top}$$

$$M_0 = \mathbb{E}[X] = \sum_{i=1}^K \pi_i \mu_i$$

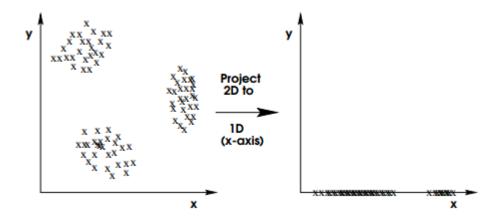
Feature subset section criteria

- * "different classifications [clusterings] are right for different purpose, so we cannot say any one classification is best" (Hartigan, 1985)
- Some commonly used criteria:
 - Maximum likelihood (applicable for probabilistic methods)

P(D|a feature subset)

The need for finding the number of clusters

The number of clusters varies with dimension



Some selection methods exist for K (Dy & Brodley, 2003)

What you need to know

- Motivations for dimension reduction
- Derivations of PCA
- LLE
- Feature selection

Momework 1 out, due in two weeks!

- Reading materials:
 - Chapter 12 of Bishop's PRML
 - References in slides